Заключение РАН

№ 2122024/224020500256-0

Заключение РАН по отчету о проведенном научном исследовании, о полученных научных и (или) научно-технических результатах

Заключение федерального государственного бюджетного учреждения «Российская академия наук» по отчетам научных организаций и образовательных организаций высшего образования, осуществляющих научные исследования за счет средств бюджетов бюджетной системы Российской Федерации, о проведенных научных исследованиях (разработках), о полученных научных и (или) научно-технических результатах

Наименование организации, осуществляющей научные исследования за счет средств бюджетов бюджетной системы Российской Федерации, представившей отчет

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ОБЪЕДИНЕННЫЙ ИНСТИТУТ ВЫСОКИХ ТЕМПЕРАТУР РОССИЙСКОЙ АКАДЕМИИ НАУК

Наименование учредителя либо государственного органа или организации, осуществляющих функции и полномочия учредителя

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Наименование научной темы по научным исследованиям (далее - научная тема)

Экспериментальные исследования и моделирование теплофизических и тепломассообменных процессов в геотермальных системах и энергоустановках на основе различных возобновляемых источников энергии

Код (шифр) научной темы, присвоенный учредителем (организацией)

FFUE-2021-0003

Номер государственного учета научно-исследовательской, опытно-конструкторской работы в Единой государственной информационно системе учета результатов научно-исследовательских, опытно-конструкторских и технологических работ гражданского назначения (далее ЕГИСУ НИОКТР)³ или в Едином реестре результатов научно-исследовательских, опытно-конструкторских и технологических работ военного, специального и двойного назначения

224020500256-0

Срок реализации научной темы

Год начала (для продолжающихся научных тем): Год окончания:

2021	2022
2021	2023

Наименование этапа научной темы (для прикладных научных исследований)

Нет данных

Срок реализации этапа научной темы (дата начала и окончания этапа в формате ДД.ММ.ГГ. согласно техническому заданию)

Дата начала: Дата окончания:

01.01.2023	31.12.2023

Вид научной (научно-технической) деятельности

Фундаментальное исследование

№ 2122024/224020500256-0

Оценка научной составляющей полученных научных и научно-технических результатов, выполненных за отчетный финансовый год и (или) этапа работ согласно техническому заданию (для прикладных научных исследований)

1. Оценка актуальности проводимых научных исследований, научный потенциал и значимость полученных научных и научно-технических результатов

На данном этапе работа выполнялась по двум направлениям: «Исследование теплофизических свойств рабочих веществ, используемых в возобновляемых энерговырабатывающих системах при высоких температурах и давлениях» и «Исследования по тепломассопереносу и их приложения в геотермии». Актуальность геотермальной энергетики в последнее время начала резко возрастать. На саммите в ОАЭ по климату приняты решения по утроению мощностей ВИЭ к 2030 г. К 2050 г. теоретически высказывается предложение о стократном увеличении производства энергии из подземных источников. Для этого необходимы интенсивные исследования теплофизических свойств рабочих агентов геотермальных энергетических установок и материалов окружающей подземной среды, что необходимо для развития новых геотермальных технологий, чему и посвящена данная работа. При этом необходимо решать сложные задачи движения многофазных потоков в пористой среде, причем с фазовыми переходами и учетом осмотического эффекта, который проявляется в случае больших градиентов концентрации солей, растворенных в геотермальной воде. Такие случаи характерны, в частности, для условий Дагестана.

2. Научная новизна полученных научных и научно-технических результатов.

За отчетный период получен ряд новых научных результатов, преимущественно связанных с теплофизическими свойствами флюидонасыщенных пород и рабочих агентов энергетических установок, а также процессов переноса в пористых горных породах в условиях многофазности и влияния осмотического эффекта. Необходимо отметить такие важные результаты, как: зависимости теплопроводности флюидонасыщенного (включая СО2 в критических и сверхкритических условиях) песчаника от температуры и давления; значения скорости ультразвука в жидком н-бутилциклогексане на линии насыщения, которые применены для расчета основных термодинамических свойств при насыщении; новая обобщенная формула, позволяющая рассчитывать значения теплопроводности многокомпонентных водно-солевых систем (геотермальных растворов) в широких диапазонах условий; новая математическая модель фильтрации раствора в пористой среде с полупроницаемыми включениями, учитывающая как химический, так и термический осмос; методика выполнения оценок испарения и конденсации влаги в почве на основе данных по температуре почвы и скорости фильтрации почвенного воздуха; оценка экстремальных климатических изменений в одном из регионов Дагестана; обобщенная математическая модель процессов промерзания пористых сред, насыщенных раствором солей, с учетом осмотического эффекта. Результаты опубликованы в 10 рейтинговых научных журналах (4 международных).

(используются пункты формы отчета, приложение - отчет о научно-исследовательской работе, а также общедоступные информационные источники и базы данных, российские и международные системы научного цитирования)

3. Оценка качества результатов (нужное отмечается любым знаком в соответствующем квадрате)

результаты имеют высокую значимость и находятся на мировом уровне	
результаты значимы для развития данной области науки (решения конкретных прикладных задач) в России	V
результаты не являются значимыми и не имеют серьезной перспективы развития	

Комментарий:

Авторы представили ряд оригинальных моделей для описания теплофизических свойств веществ и процессов переноса при движении двухфазных потоков в пористых горных породах. Показана важность учета осмотического эффекта как химического, так и термического. Авторы обладают современным оборудованием для измерений теплофизических свойств как чистых веществ, так и растворов. По результатам выполнения 3 этапа проекта опубликованы 10 статей в рейтинговых журналах, включая 4 международных.

4. Оценка кадрового потенциала

Проект выполняют квалифицированные специалисты - из 13 исследователей 4 доктора и 7 кандидатов наук. У коллектива имеется большой опыт в подобных исследованиях. По результатам выполнения 3 этапа проекта опубликованы 10 статей в рейтинговых журналах, включая 4 международных. Следует отметить, что в данном научном коллективе всего один молодой исследователь с возрастом до 39 лет, что в существенной мере будет ограничивать успешную перспективу развития данных актуальных исследований.

(используются пункты формы отчета, приложение - отчет о научно-исследовательской работе, а также общедоступные информационные источники и базы данных, российские и международные системы научного цитирования. Проводится сравнительный анализ состава загрузки коллектива, представленного ранее в проекте научной темы и приведенного в отчетной форме)

Заключение РАН

№ 2122024/224020500256-0

5. Потенциал практического применения полученных научных и научно-технических результатов с учетом приоритетов Стратегии научно-технологического развития Российской Федерации, утвержденной Указом Президента Российской Федерации от 1 декабря 2016 г. N 642

Результаты проекта могут быть использованы при проектировании геотермальных установок, расчетах производительности геотермальных скважин и разработке технологий извлечения ценных химических веществ из геотермальных растворов. Проект соответствует приоритетному направлению СНТР: «Переход к экологически чистой и ресурсосберегающей энергетике, повышение эффективности добычи и глубокой переработки углеводородного сырья, формирование новых источников, способов транспортировки и хранения энергии».

6. Уровень научного и научно-технического сотрудничества, в том числе международного в рамках выполнения научных исследований (участие в международных и российских исследовательских программах, проектах, научных коллаборациях и консорциумах физических лиц и организаций, а также иные формы сотрудничества) (заполняется при наличии)

Информация в заключительном отчете отсутствует.

(используются пункты формы отчета: «Научное и научно-техническое сотрудничество, в том числе международное»)

7. Вывод о целесообразности (нецелесообразности) финансирования проекта научной темы за счет средств бюджетов бюджетной системы Российской Федерации

Рекомендуется принять отчет по завершившейся научной теме.	V	
Не рекомендуется принять отчет по завершившейся научной теме.		

Комментарий:

Представлен заключительный (по 3 этапу) отчет объемом 86 стр. по теме «Экспериментальные исследования и теплофизических и тепломассообменных процессов в геотермальных системах энергоустановках на основе различных возобновляемых источников энергии». Все поставленные задачи успешно решены, намеченные цели в целом достигнуты. Полученные результаты в достаточной мере представлены в рецензируемых журналах. Потенциал практического применения полученных научных и научно-технических результатов с учетом приоритетов Стратегии научно-технологического развития Российской Федерации достаточно высокий. Проект выполняли квалифицированные специалисты, у которых имеется большой опыт в подобных исследованиях.

Настоящим подтверждаю, что при проведении экспертизы отчета исключен конфликт интересов и сохранена конфиденциальность рассматриваемых материалов.

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат: 01DA001EE4C7F720000C048E00060002

Подписант: Чернышев Сергей Леонидович Подписан: 26 марта 2024 г. 16:03

Действителен: с 2023-10-16 по 2024-10-16

Должность:Вице-президент